Knock Suppression Calculations In Highly Turbocharged Gasoline/Ethanol Engines Using Direct Ethanol Injection

نویسندگان

  • L. Bromberg
  • D. R. Cohn
  • J. B. Heywood
چکیده

Calculations are described of knock suppression using direct ethanol injection in spark ignition gasoline/ethanol engines. The calculations show that evaporative cooling from direct ethanol injection, coupled with the high octane rating of ethanol, can be highly effective in inhibiting knock, thereby allowing use of small turbocharged engines with substantially increased efficiency. The calculations indicate that the enhanced knock suppression can allow for more than a factor of two increase in manifold pressure relative to conventional, naturally aspirated engines while also allowing for increased compression ratio. This increased pressure could enable substantial engine downsizing resulting in a part-load efficiency increase of 30% relative to conventional port fueled injected engine operation. Less than one gallon of ethanol for twenty gallons of gasoline could be sufficient to allow this engine downsizing and efficiency increase. Direct ethanol injection could provide a new opportunity to use ethanol more effectively to both displace gasoline and, more importantly, to increase gasoline utilization efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSFC/JA-06-16 Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging for Cost Effective Reduction of Oil Dependence and CO2 Emissions

Ethanol biofuel could play an important role in reducing petroleum consumption by enabling a substantial increase in the fuel efficiency of gasoline engine vehicles. This ethanol boosted engine concept uses a small amount ethanol to increase the efficiency of use of a much larger amount of gasoline by approximately 30%. Gasoline consumption and the corresponding CO2 emissions would thereby be r...

متن کامل

Effective Octane and Efficiency Advantages of Direct Injection Alcohol Engines

Ethanol is receiving great interest as an alternative fuel. Methanol is another alcohol fuel that could serve as a replacement for gasoline. Although it is currently receiving much less attention, it has the potential to play an important role. Like ethanol, methanol also has the advantage of being a liquid fuel and it can be produced from gasification of a variety of feedstocks using well esta...

متن کامل

Effective Octane And Efficiency Advantages Of Direct Injection Alcohol

Ethanol is receiving great interest as an alternative fuel. Methanol is another alcohol fuel that could serve as a replacement for gasoline. Although it is currently receiving much less attention, it has the potential to play an important role. Like ethanol, methanol also has the advantage of being a liquid fuel and it can be produced from gasification of a variety of feedstocks using well esta...

متن کامل

Effect of Compression Ratio and Manifold Pressure on Ethanol Utilization in Gasoline/Ethanol Engines

The model developed previously for evaluating the impact of direct ethanol injection on the avoidance of knock in spark ignition engines is used to evaluate the trends of changes in compression ratio and variation in the inlet pressure. The ethanol fraction requirements through the engine map is calculated using detailed chemical kinetics model, and a vehicle simulation is used to determine the...

متن کامل

The Effects of Ethanol–gasoline Blend on Performance and Exhaust Emission Characteristics of Spark Ignition Engines

The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006